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Abstract
Electrical conduction is studied along parabolically confined quasi-one-
dimensional channels, in the framework of linear-response theory, for elastic
scattering. For zero magnetic field an explicit multichannel expression for the
conductance is obtained that agrees with those in the literature. A similar but
new multichannel expression is obtained in the presence of a magnetic field
�B ‖ ẑ perpendicular to the channel along the x-axis. An explicit connection
is made between the characteristic time for the tunnel-scattering process and
the transmission and reflection coefficients that appear in either expression.
For uncoupled channels a Landauer-type expression is obtained that tends to
a conductance of N parallel channels. In addition, this expression accounts
explicitly for the Hall field and the confining potential, and is valid, with slight
modifications, for tilted magnetic fields in the (x, z) plane.

1. Introduction

The observation of the conductance quantization [1] more than a decade brought new attention
to Landauer’s formula [2] for the conductance of single-channel one-dimensional electronic
systems and to its multichannel version derived in [3] from arguments similar to those used
by Landauer. The single-channel formula [4] and a modified version of it [5] have been
derived from linear-response theory. Slight variations between different results were a source
of discussion [6], and crucial importance was given to the conditions of measurement. It
was established that four-probe measurements do not give the same answer as two-probe
measurements [7]. For a review of the subject we refer the reader to [7] and [8].

The conductance has also been studied in the presence of a magnetic field. The two-probe
formula and its generalization have been found to hold. It was derived again using linear-
response theory [9]. Onsager’s relation, describing the symmetry of the conductance upon
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Figure 1. A quasi-one-dimensional conductor, connected to left (L) and right (R) reservoirs in the
presence of crossed electric and magnetic fields. The length of the conductor is L. The solid dots
represent random scattering centres.

changing the direction of the magnetic field, was verified. For the four-probe measurement it
was realized [10] and confirmed theoretically [11] and experimentally [12] that the conductance
can be asymmetric under reversal of the magnetic field.

As noted by the authors of [3] their multichannel formula does not reduce, for uncoupled
channels, to that of [2]. This drawback results from their assumption that all channels
originating from the reservoirs have the same electrochemical potential regardless of their
velocities. In a recent PhD thesis [13], completed under the direction of one of us (CMVV), a
multichannel formula, free from this drawback, was derived for zero magnetic field.

In this work, following [13], we derive a rigorous multichannel conductance formula in
the presence of a magnetic field from linear-response theory. As in almost all works in the
literature, it is valid for elastic scattering, i.e., in mesoscopic conductors. The formulation
shows explicitly the cancellation in the product of the velocity with the quasi-one-dimensional
density of states in the current carried by a channel or mode and therefore reflects some of the
intuition of the original work [3]. The formula is made very explicit for parabolically confined
quasi-one-dimensional channels. This type of confinement allows us to easily include the Hall
field which simulates the electron–electron interaction in a mean-field sense [14]. We also
consider the case of tilted magnetic fields.

In section 2 we present a general formula for the conductivity and give the related one-
electron characteristics. In section 3 we evaluate the conductance using a scattering formulation
and present various limits. Finally in section 4 we present a discussion of the results.

2. Expression for the conductivity

2.1. Linear-response expressions

In order to explain our approach we first present some general results from [13] and [15]
which will be used to derive a general expression for the magnetoconductance. The model
of the conductor or sample that we use is illustrated in figure 1. It consists of two perfect
leads (reservoirs) with random scattering centres in the middle. The longitudinal electric field
representing the potential difference is applied in the inhomogeneous part. A magnetic field
B is applied along the z-axis ( �B = −Bẑ).

The many-body Hamiltonian that enters von Neumann’s equation is

Htot(t) = H0 + W(t) + HI (1)

where HI represents the scattering or perturbation and W(t) the external force. The free-
electron part H0 will be specified later for the geometry of figure 1. For elastic scattering
the equation for the many-body density operator can be transformed to a similar one for the
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one-body density operator ρ(t). The latter is the sum of the unperturbed, Fermi–Dirac operator
f (h) and the perturbation operator ρ̃(t), i.e., ρ(t) = f (h) + ρ̃(t). For linear responses and
with the initial condition ρ̃(0) = 0 the equation for ρ̃(t) reads

(∂ρ̃(t)/∂t) + iL̃ρ̃(t) = −(i/h̄)[w̃(t), f (h)] (2)

where L̃• ≡ (1/h̄)[h(t), •] and • stands for an arbitrary one-body operator. The solution is
found using the resolvent of L̃, i.e., the Laplace transform of equation (2). In the Laplace
domain equation (2) reads

ρ̃(s) = − i

h̄

1

s + iL̃ [w̃(s), f (h)]. (3)

In a representation in which H0 is diagonal, so is its one-body counterpart h0. In this
representation the operator ρ̃ has a diagonal (ρ̃d ) and a nondiagonal (ρ̃nd ) part, ρ̃ = ρ̃d + ρ̃nd .
Substituting this in equation (3) and acting on it with diagonal (P) and nondiagonal (1 − P)
projection superoperators leads to two coupled equations, one for ρ̃d and one for ρ̃nd . The
steady-state solution of these equations is represented by the limit t → ∞. In the Laplace
domain this is equivalent to the limit s → 0+.

The result obtained for the diagonal part ρ̃d of the density operator, the only one pertinent
to the conductance, is

ρ̃d = − i

h̄
�̃−1�

∑
αβ

[w, f (h)]αβ |ψα〉〈ψβ |. (4)

Here �̃ and � are superoperators associated with the transitions caused by the perturbation hI .
They are given by �̃ = PL1[1/(iL + 0+)]L1 and � = P [

1 − L1[1/(iL + 0+)]L1
]

with L and
L1 defined by L• ≡ [H, •]/h̄ and L1• ≡ [V, •]/h̄. �̃ is the one-particle scattering operator.
The one-body analogue w of W is related to the electric field by eE(r) = −∇w(r). Further,
|ψi〉 are the eigenstates of h = h0 + hI , i.e., h|ψi〉 = Ei |ψi〉. The operator � does not affect
the sum and the number [w, f (h)]αβ . Using the relation �|ψα〉〈ψβ | = |ϕα〉〈ϕβ |δαβ , where
|ϕα〉 is the eigenstate of h0 and

〈ψα|[w, f (h)]|ψβ〉 = −ih̄
f (εβ)− f (εα)

εβ − εα

∫
V0

dr′ E(r′)〈ψα|j (r′)|ψβ〉 (5)

with f (h)ψi = f (εi), we have

〈ϕθ |ρ̃d |ϕγ 〉 = −
∑
αβ

〈ϕθ |�̃−1|ϕα〉δβγ f ′(εα)δαβ
∫
V0

dr′〈ψα|j (r′)|ψβ〉E(r′) (6)

where V0 is the volume. The current density is

J (r) = Tr{j (r)ρ̃d} =
∑
γ θ

〈ϕγ |j (r)|ϕθ 〉〈ϕθ |ρ̃d |ϕγ 〉. (7)

Substituting equations (6) into (7) and comparing the result with the general expression

J (r) =
∫
V0

dr′ σ(r, r′)E(r′) (8)

we find the following expression for the conductivity:

σ(r, r′) ≡ ↔
σ d (r, r

′) = −
∑
γ θ

jγ θ (r)〈ϕθ |�̃−1|ϕγ 〉f ′(εγ )〈ψγ |j (r′)|ψγ 〉 (9)

where the left–right arrow indicates that σ(r, r′) is a tensor. The conductance G is given by

G =
∫
A

∫
A′

dA · ↔
σ d (r, r

′) · dA′ (10)

where A and A′ are two suitably chosen surfaces.



806 S Guillon et al

2.2. One-electron characteristics

Eigenfunctions and eigenvalues. We consider an electron gas which interacts only with
impurities. As shown in figure 1, a magnetic field B = −Bẑ is applied along the z-axis.
When an electric field �Ex is applied, the resulting Hall field E⊥ is opposite to the y-axis. We
consider a parabolic confining potential along the y-axis, Vy = m,2y2/2, and choose the
vector potential A = Byx̂. Including the field E⊥ [16] in the one-electron Hamiltonian h0

gives

h0 = 1

2m
( �P − qA)2 − qE⊥y +

1

2
m,2y2. (11)

We attempt a solution of equation (11) in the formϕ(x, y) = χ(y) exp(ikxx) and introduce
the variable ξ = h̄kx/qB + qE⊥/mω2

c , where ωc = qB/m is the cyclotron frequency. Using
ω2
T = ω2

c +,2, h0ϕ(x, y) = εϕ(x, y), and completing the square we can rewrite equation (11)
as

mω2
T

2

(
y − ω2

c

ω2
T

ξ

)2

− h̄2

2m
χ ′′(y) = Eχ(y) (12)

where E = ε − E(k). With ζ = [y − (ω2
c/ω

2
T )ξ ](mωT /h̄)

1/2 the solution of equation (12)
is χn(ζ ) = e−ζ 2/2Hn(ζ ), where Hn(ζ ) are the Hermite polynomials. The corresponding
eigenvalues ε = E + E(k) ≡ ε(kx, n) are given by

ε(kx, n) = (n + 1/2)h̄ωT + (h̄2k2
x,

2 − 2ωCh̄kxqE⊥ − q2E2
⊥)/2mω2

T (13)

where n is the Landau level index. From this expression we obtain the velocity v = ∇kε(k)/h̄

along the direction of propagation. The result is

vx = (h̄kx,
2 − ωcqE⊥)/mω2

T . (14)

Current density. The current-density operator is expressed in terms of the one-particle
eigenfunctions in matrix form. From quantum field theory [15], j = (h̄/i)

∫
8∗v8 d3r ,

we obtain

jβα = −iqh̄

2m

[
ϕ∗
β(∇ϕα)− (∇ϕ∗

β)ϕα
] − q

m
Aϕ∗

βϕα. (15)

The term in the square brackets represents the standard ponderomotive or diffusion current
and the term ∝A a deflection due to the magnetic field. We rewrite equation (15) in terms of

the gauge-invariant derivative [9] D = ∇ − iqA/m in the form f
↔
D g = f∇g − g∇∗f

jβα = −iqh̄

2m
ϕ∗
β

↔
D ϕα. (16)

The current density in the x-direction depends on the y-position. It vanishes along the
y-direction due to the parabolic potential confinement.

Equation (16) leads to some useful properties of the current density expressed in terms of
the relevant eigenvalues. For different eigenvalues one has

∇jβα = iq

h̄
(εα − εβ)ϕαϕ

∗
β. (17)

On the other hand, for eigenfunctions of the same energy the following properties hold:∫
dy ϕ∗

±β(
↔
D · x)ϕ±α = ±2mi

h̄
δαβ εβ = εα (18)

∫
dy ϕ∗

∓β(
↔
D · x)ϕ±α = 0 εβ = εα (19)
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if the current flux is normalized instead of the eigenfunctions as shown in [9]. The new
normalized eigenfunction is

ϕ±,a = e±ikxa xχna,±kxa (y)/
√
θa. (20)

The normalization
( ∫

χ2 dy = 1
)

constant θ has the units of velocity; it is given by

θ±a = [
h̄|ka|,2 ∓ qωcE⊥

]
/mω2

T = v±a. (21)

Notice the difference between v±a , always positive, cf equation (13), and the velocity given
by equation (14).

Conductivity. In terms of the eigenfunctions (12) the conductivity reads [13]

↔
σ d (r, r

′) = −
∫

f ′(εp)
↔
σ
εp

d (r, r′) dεp (22)

where
↔
σ
εp

d (r, r′) =
∑
s

δ(εp − εs)
(
�̃−1j (r)

)
ss
j (r′)SS. (23)

Here f ′(εs) is the derivative of the Fermi–Dirac function, s ≡ {n, kx}, ϕs are the unperturbed
states, and ψS the scattering states. We have also used the notation 〈ϕs |X|ϕs ′ 〉 = Xss ′ and
〈ψS |X|ψS ′ 〉 = XSS ′ for the matrix elements of X. The Dirac δ-function is rewritten in terms
of kx using the property

δ (g(kx)) =
∑
i

δ(kx − kxi )

|g′(kxi )|
where g′ is the derivative of g(kx) and kn± are the roots of g(kx) = 0 written explicitly as

[h̄2,2k2
x − 2ωch̄qE⊥kx − q2E2

⊥]/2mω2
T + (n + 1/2)h̄ωT − εp = 0. (24)

The roots kn± of this quadratic equation are of the form kn± = [−b ± (b2 − 4ac)1/2]/2a.
They are real—and opposite to each other—if c is negative. If this condition holds the
wavefunctions can propagate in different channels. For complex roots, the wavefunctions
have negative exponentials and their amplitude decreases with propagation. These two
roots are opposite to each other if c is negative. The propagation modes depend on
confinement, magnetic field, Landau-level index and electric field. For a given energy
g′(kn±) = (h̄2,2kn± −ωch̄qE⊥)/mω2

T and the replacement of the sum over kx by an integral:

∑
kx

→ L

2π

∫ L/2

−L/2
dkx

leads to

↔
σ
εp

d (r, r′) =
εp∑
n

L

2π

∫ L/2

−L/2
dkx

[
δ(kx − kn+)

|g′(k+)| +
δ(kx − kn−)

|g′(k−)|
] (
�̃−1j (r)

)
ss
j (r′)SS

= L

2π

εp∑
ns

[
Mkn+ + Mkn−

]
(25)

where

Mkn± = 1

|g′(kn±)|j (r
′)S±S±

(
�̃−1j (r)

)
s±s±. (26)

The notation s± or S± indicates that only the values kn± are involved in the relevant Xss ′ or
XSS ′ matrix element.
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3. New conductance expression in terms of transmission and reflection coefficients

3.1. Scattering formulation

For clarity, the two roots kn± are assumed to be in opposite directions. This holds if ac is
negative and it is the case when the Hall field is neglected. Then equations (10) and (23) give

G(εp) = L

2π

εp∑
n

(Nkn+ + Nkn−) (27)

where

Nkn± = 1

|g′(kn±)|
∫

dA′ j (r′)S±S±
∫

dA
(
�̃−1j (r)

)
s±s±. (28)

We now proceed with the evaluation of these two integrals that are related to transmission and
reflection coefficients. We can carry out the integrations by choosing two surfaces A and A′

in an asymptotic region. The choice of surface is arbitrary. It is not necessary to know the
exact scattering states. It is sufficient to have their asymptotic expression in a region away
from the scattering centres. The scattering states are represented by a linear combination of
eigenfunctions of the unperturbed Hamiltonian. The results for the various regions are

ψn+ =
εp∑
n′

tLnn′(ε)ϕn′+(r) x � Ls (29)

ψn+ = ϕn+(r) +
εp∑
n′

rLnn′(εp)ϕn′−(r) x � 0 (30)

ψn− = ϕn−(r) +
εp∑
n′

rRnn′(εp)ϕn′+(r) x � Ls (31)

ψn− =
εp∑
n′

tRnn′(εp)ϕn′−(r) x � 0. (32)

Using the normalization of the flux, the current density is

jβα = √
vβvαλψ

∗
β

↔
D ψα (33)

where λ = −iqh̄/2mL. Specifically for the different regions we have

jψn+
(r′) = λvn+

εp∑
n′

εp∑
n′′

tL∗
nn′ t

L
nn′′ϕn′+

↔
D ϕn′′+ x � Ls (34)

jψn+
(r′) = λvn+

{
ϕ∗
n+

↔
D ϕn+ +

εp∑
n′

rL∗
nn′ϕ

∗
n′−

↔
D ϕn′′+

+
εp∑
n′′

rLnn′′ϕ
∗
n′+

↔
D ϕn′′− +

εp∑
n′

εp∑
n′′

rL∗
nn′r

L
nn′′ϕ

∗
n′−

↔
D ϕn′′−

}
x � 0 (35)

jψn−(r
′) = λvn−

{
ϕ∗
n−

↔
D ϕn− +

εp∑
n′

rR∗
nn′ϕ

∗
n′+

↔
D ϕn′′−

+
εp∑
n′′

rRnn′′ϕ
∗
n′−

↔
D ϕn′′+ +

εp∑
n′

εp∑
n′′

rR∗
nn′r

R
nn′′ϕ

∗
n′+

↔
D ϕn′′+

}
x � Ls (36)

jψn−(r
′) = λvn−

εp∑
n′

εp∑
n′′

tR∗
nn′ t

R
nn′′ϕ

∗
n′−ϕn′′− x � 0. (37)
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Evaluation of the first integral. Using equations (18) and (19) we obtain∫
jψn+

(r′) dA′ = qvn+

L

εp∑
n′

|tLnn′ |2 x � Ls (38)

∫
jψn+

(r′) dA′ = qvn+

L

{
1 −

εp∑
n′

|rLnn′ |2
}

x � 0 (39)

∫
jψn−(r

′) dA′ = −qvn−
L

{
1 −

εp∑
n′

|rRnn′ |2
}

x � Ls (40)

∫
jψn−(r

′) dA′ = −qvn−
L

εp∑
n′

|tRnn′ |2 x � 0. (41)

With flux conservation (1 = |r|2 +|t |2), we obtain the same result far away from each scattering
region: ∫

j (r′)n±n± dA′ = ±qvn±
L

∑
s ′

|tL(R)nn′ |2. (42)

Evaluation of the second integral. The second integral has the superoperator �̃. For elastic
scattering it can be shown [17] that �̃ has an exact inverse with dimension of time (= energy/h̄).
We therefore write �̃j (r))ss = (1/τs)jss which leads to (�̃−1j (r))ss = τsjss and∫

(�̃j (r))ss dA = 1

τs

∫
jss dA (43)

where τs is a characteristic time qualified below. We deduce the value of τs as follows. Using
equations (18) and (33) we have

β± =
∫

jn±n± dA = ±(qvn±/L). (44)

For the integral on the left-hand side of equation (43), we use the result [13]
(
�̃j (r)

)
n±n± = 2π

h̄

∑
n′

δ(εp − εn′)|Tn±n′±|2 (jn±n± − jn′n′) (45)

where Tn±n′± = 〈ϕn±|V |ψn′±〉 is the transition operator and V the scattering potential. With
(�̃−1j (r))ss = τsjss , inspection of equation (45) shows that τs is a characteristic time
associated with the tunnel–scattering process. In the following though we will refer to it
simply as the characteristic time.

The Dirac δ-function is rewritten in terms of the longitudinal components of the wavevector
and of the two roots k±. Then replacing the sum over k′

x by an integral leads to

(
�̃j (r)

)
n±n± = L

h̄

εp∑
n′

[ |Tn±n′+|2
|g′(k′

n′+)| (jnn − jn′+) +
|Tn±n′−|2
|g′(k′

n′−)| (jnn − jn′−)
]
. (46)

Using equations (44), (45), and (47) the characteristic time becomes

1

τn±
= L

h̄

εp∑
n′

[ |Tn±n′+|2
|g′(k′

n′+)|
(

1 ∓ β ′
+

βn±

)
+

|Tn±n′−|2
|g(k′

n′−)|
(

1 ± β ′−
βn±

)]
. (47)

Using equations (42), (44), (47), and (28) we get

Nkn± = q2

L2

v2
n±τn±

|g′(kn±)|
∑
n′

|tnn′ |2. (48)
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3.2. Evaluation of the conductance

Expression of Tss ′ . With V = h − h0 the matrix element Tss ′ = 〈ϕs |V |ψs ′ 〉 of the transition
operator T , between a state ϕs and a scattering state ψs ′ , becomes

Tss ′ = εs ′ 〈ψs |ϕs ′ 〉 − 〈ϕs | (H0|ψs ′ 〉) . (49)

We modify the second term on the right-hand side so that the Hamiltonian operates on the left
element. In order to do so we recall the expression∫

ϕ∗Pxψ dv =
∫

Px(ϕ
∗ψ) dv +

∫
(P ∗

x ϕ
∗)ψ dv. (50)

With that we obtain∫
ϕ∗Px(Pxψ) dv =

∫
(P 2ϕ∗)ψ dv −

∫
h̄2 ∂

∂x

[
ϕ∗ ∂

∂x
ψ − ψ

∂

∂x
ϕ∗

]
dv. (51)

If we combine these results with the Hamiltonian given by equation (11) we obtain

〈ϕs |(H0|ψs ′ 〉) = (〈ϕs |H0|)ψs ′ 〉 − h̄2

2m

∫
∇(ϕ∗ ↔

∇ ψ) dv − qB

m

∫
Px(ϕ

∗yψ) dv. (52)

If we combine this result with the Green theorem, we obtain

Tss ′ = (εs − εs ′)〈ϕs |ψs ′ 〉 +
h̄2

2m

∫
A

dA (ϕ∗
s

↔
∇ ψs ′) +

qB

m

∫
Px(ϕ

∗
s yψs ′) dv. (53)

The first term is zero if the energies are the same. If so, the remaining terms can be simplified.
The result can be written compactly as

Tss ′ = h̄2

2m

∫
A

dA · x̂ϕ∗
s (

↔
D)ψs ′ . (54)

Finally, if we write it in terms of the normalized flux, we obtain

Tss ′ =
√
vsvs ′

L

h̄2

2m

∫
A

dA · x̂ϕ̄∗
s (

↔
D)ψ̄s ′ . (55)

Tss ′ in terms of transmission and reflection coefficients. To evaluate the term Tn±n′+, we use
equations (29) and (31) together with equations (18) and (19). For x � Ls we obtain

Tn+n′+ = ih̄

L

√
vn+vn′+t

L
n′n Tn−n′+ = 0. (56)

For x � 0 the results are

Tn+n′+ = ih̄

L

√
vn+vn′+δnn′ Tn−n′+ = − ih̄

L

√
vn−vn′+r

L
n′n. (57)

To evaluate the term Tn±n′− we use equations (30) and (32) together with equations (18)
and (19). For x � Ls we obtain

Tn+n′− = ih̄

L

√
vn+vn′−rRn′n Tn−n′− = − ih̄

L

√
vn−vn′−δnn′ (58)

and for x � 0

Tn−n′− = − ih̄

L

√
vn−vn′−tRn′n Tn+n′− = 0. (59)
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Characteristic time in terms of transmission and reflection coefficients. With the form of
T and the characteristic time given by equation (47), the results for the various asymptotic
regions are as follows. For x � Ls we have 1/τn− = 0 and 1/τn+ �= 0. For x � 0 the results
are 1/τn+ = 0 and 1/τn− �= 0. These nonzero results are given by

1

τn±
= h̄

L

εp∑
n′

[
vn±vn′+|tL(R)nn′ |2(1 − b±)/|g′(k′

n′+)| + vn±vn′−|rR(L)nn′ |2(1 + b±)/|g′(k′
n′−)|

]
.

(60)

Here b± = βn′±/βn and + (−) corresponds to tL, rR (tR, rL). This is simplified by noticing
that g′(k) = �∇kε(k) = h̄v gives |g′(kn±)| = h̄vn±. Then equation (60) takes the simpler form

1

τn±
= 1

L

εp∑
n′

[
vn±|tL(R)nn′ |2(1 − b±) + vn±|rR(L)nn′ |2(1 + b±)

]
. (61)

We emphasize the importance of this result. To our knowledge, with the exception of [13]
for B = 0, the transmission and reflection coefficients have not been associated with actual
scattering time in the literature. Here, through a master equation approach we have an explicit
result, for finite B, relating these coefficients to the characteristic time.

Expression for the conductance. Using equations (48), (61), and (44) we obtain

Nkn± = q2vn±
L|g′(kn±)|

∑
n′ |tnn′ |2∑

n′ X(n, n′)
(62)

where

X(n, n′) = |tL(R)nn′ |2(1 − vn′+/vn±) + |rR(L)nn′ |2(1 + vn′−/vn±). (63)

With current conservation
∑

n′
(|tL(R)nn′ |2 + |rR(L)nn′ |2) = 1, this becomes

Nkn± = q2

L

∑
n′

|tL(R)nn′ |2
/[

1 +
εp∑
n′

YRL
± (n, n′)

]
(64)

where

YRL
± (n, n′) = (|rRnn′ |2vn′− − |tLnn′ |2vn′+)/vn±. (65)

Equations (27) and (32) give the conductance as

G(εp) = q2

h

εp∑
n

[ ∑
n′ |tLnn′ |2∑

n′ YRL
+ (n, n′)

+

∑
n′ |tRnn′ |2∑

n′ Y
LR− (n, n′)

]
. (66)

This new conductance expression is more general than the two-terminal expressions of
the literature. This can be easily appreciated by realizing that it has the following interesting
feature

(i) It is simplified considerably if we neglect the Hall field; then vn+ = vn− and the two terms
in the square brackets become identical. The same holds in the absence of the magnetic
field. Actually, for B = 0 equation (66) takes the form of equation (4.184) of [13]. The
only difference is that in equation (66) the transverse channels and confining potential are
explicitly specified whereas in [13] they are not.

(ii) For uncoupled channels, i.e., for rnn′ = rnn′δnn′ and tnn′ = tnn′δnn′ , equation (64) gives the
multichannel version of Landauer’s result, for identical terminals:

G(εp) = q2

h

εp∑
n

|tnn|2
|rnn|2 = q2

h

εp∑
n

Tn

Rn

. (67)
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(iii) It is interesting to contrast the B = 0 limit of equation (66) with the B = 0 result of [13].
In this case vn+ = vn−. Proceeding then as in [13], we may replace 1/vn′+ ∝ τn by
(1/N)

∑
n′(1/vn′) and make an average over the channels, to obtain the expression of [3],

i.e.,

G(εp) = q2

h

∑
n

Tn

∑
n(2/vn)∑

n(1 + Rn − Tn)/vn
(68)

if we remember that Rn = ∑
n′ |rnn′ |2 and Tn = ∑

n′ |tnn′ |2. Despite its approximate
character, the procedure indicates that equation (66) is more general than equation (68)
even for B = 0.

(iv) ForR ≈ 1 andT � 1, equation (66) gives the standard [3,9] resultG(ε) = (q2/h)Tr{t t∗}
if we assume a weak [3] channel coupling such that vn′ � vn, n

′ < n.
(v) When the strength of the scattering is vanishingly small, we have r ≈ 0 and t ≈ 1.

As expected, in this case for identical terminals and vn′ � vn, n
′ < n, the conductance

diverges, as realized in a four-terminal (two leads, two probes) experiment.
(vi) Finally, we notice that the expression contains the Hall field, through the factors un±,

cf equation (21) which accounts for the electron–electron interaction in the Hartree
sense [14].

3.3. Conductance in tilted magnetic fields

Equation (66) is valid for a perpendicular magnetic field �B parallel to the z-axis. It is of interest
to have an expression valid for tilted fields �B but the solution of Schrödinger’s equation becomes
very unwieldy and, to our knowledge, can be obtained only numerically when �B points in an
arbitrary direction. However, in one particular case a simple analytic solution exists and leads
to a generalization of the conductance (66). Below we briefly derive the relevant expression
since we are not aware of any pertinent result in the literature. This is the case when the field �B
is in the (x, z) plane and has componentsB‖ along x̂ andB⊥ along ẑ. The situation is described
by the vector potential A = B⊥yx̂ + B‖yẑ. Assuming an eigenfunction ψ(x, y) = f (y)eikxx

the Hamiltonian gives[
h̄2k2

x

2m
− y(ω⊥h̄kx + qE⊥) +

1

2
m(ω2

B + ,2)y2

]
f (y)− h̄2

2m
f ′′(y) = εf (y). (69)

With ξ = (ω⊥h̄kx + qE⊥)/mω2
B this equation is transformed to

mω̃2
T

2

(
y − ω2

B

ω̃2
T

ξ

)2

f (y)− h̄2

2m
f ′′(y) = Ef (y) (70)

where ω̃2
T = ω2

B +,2 and ω2
B = ω2

‖ +ω2
⊥. This is again an equation for a (displaced) harmonic

oscillator. The corresponding eigenvalues ε ≡ ε(kx, n) are

ε(kx, n) = (n + 1/2)h̄ω̃T − [
h̄2k2

x(,
2 + ω2

‖)− 2qE⊥ω⊥h̄kx − q2E2
⊥
] /

2mω2
T . (71)

As can be seen, these results are similar to those obtained when the field �B is parallel
to the z-axis. In fact, equation (13) can be obtained from equation (71) by setting B‖ = 0
which entails ω2

B = ω2
c . All the analysis of section 3 can be repeated and the result for the

conductance has the same form. The only things that change in equation (66) are the roots
kn±—cf equation (26); they now involve equation (71) rather than equation (13). As an aside,
we note that in a longitudinal magnetic field, with B⊥ = 0, we obtain formally the same result
as in the absence of the magnetic field since the carriers are free in a parallel magnetic field.
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4. Discussion

The expression for the conductance, given by equation (66), is very general and not limited
to two identical terminals. We can interchange the indices R and T without changing the
expression. This means that the conductance does not depend on the direction of the current.
This and the various limits that this expression reproduces show its generality.

This result for the conductance, valid when a magnetic field is present, was not anticipated
in [13]. Since, at first sight, in a magnetic field the eigenfunctions along two opposite directions
would be separated by a distance ∝2kx , it was thought that the expression would change
dramatically. As shown though, incorporating the magnetic field directly in the one-electron
Hamiltonian, the (parabolic) confining potential, and the Hall field, lead to an eigenfunction
suitable for the calculations. This showed explicitly the cancellation in the product of the
velocity with the quasi-one-dimensional density of states in the current carried by a channel
or mode and simplified the final result. In addition, it allowed the consideration of tilted
magnetic fields (in the (x, z) plane) and of the electron–electron interaction in a mean-field
or Hartree sense since the Hall field was taken as constant across the width, whereas it is
not, since its value near the edges is different to that in the main part of the sample [14].
The last two aspects, limit (ii) of equations (66), and (61) for the characteristic time, are
missing from other expressions for the magnetoconductance [3, 4, 9, 18]. The most common
general formula [9] reads Gmn(ε) = (q2/h)

∑ε
ac |tmn,ac|2, where tmn,ac is the coefficient of

transmission between channel a in terminalm and channel c in terminaln. This formula applies
to a multiterminal configuration and two-probe measurements [7], whereas ours applies to a
two-terminal configuration.
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